(资料图片)
一、什么是并行处理Python 是一门功能强大的编程语言,但在处理大规模数据或复杂计算任务时,性能可能成为一个瓶颈。幸运的是,Python 提供了多种方法来提升性能,其中之一是利用并行处理来加速循环操作。本文将介绍如何使用并行处理技术来优化 for 循环,从而提高 Python 程序的执行速度。我们将讨论并行处理的概念、常用的并行处理库以及示例代码来演示如何应用并行处理来加速 for 循环。
在计算机科学中,"并行处理" 是指同时执行多个任务或操作的技术。它利用多个处理单元或线程来并发执行任务,从而提高程序的执行速度。在 Python 中,我们可以利用多线程、多进程或异步编程等技术来实现并行处理。
二、常用的并行处理库Python 提供了多个并行处理库,其中一些常用的库包括:
multiprocessing:这个内置库提供了跨平台的多进程支持,可以使用多个进程并行执行任务。threading:这个内置库提供了多线程支持,可以在同一进程内使用多个线程并行执行任务。concurrent.futures:这个标准库提供了高级的并行处理接口,可以使用线程池或进程池来管理并发任务的执行。joblib:这是一个流行的第三方库,提供了简单的接口来并行执行 for 循环,尤其适用于科学计算和机器学习任务。dask:这是一个灵活的第三方库,提供了并行处理和分布式计算的功能,适用于处理大规模数据集。在本文中,我们将重点关注 multiprocessing 和 joblib 这两个库来进行示范。
三、并行处理 for 循环的示例代码为了演示如何使用并行处理技术来加速 for 循环,我们将采用一个简单的示例场景:计算一个列表中每个元素的平方值,并将结果存储在新的列表中。
使用 multiprocessing 进行并行处理import timeimport multiprocessingdef square(num): time.sleep(1) # 模拟耗时的计算操作 return num ** 2if __name__ == "__main__": numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # 普通的 for 循环 start_time = time.time() results = [] for num in numbers: results.append(square(num)) end_time = time.time() print("普通的 for 循环时间:", end_time - start_time) # 并行处理 start_time = time.time() pool = multiprocessing.Pool() results = pool.map(square, numbers) pool.close() pool.join() end_time = time.time() print("并行处理时间:", end_time - start_time)
在上述代码中,我们定义了一个 square函数,用于计算给定数字的平方。然后,我们创建了一个 multiprocessing.Pool对象,它管理了一个进程池。通过调用 pool.map方法,我们将 square函数应用到 numbers列表的每个元素上,并使用多个进程并行执行。最后,我们获得了计算结果并打印输出。输出效果:
使用 joblib 进行并行处理import timefrom joblib import Parallel, delayeddef square(num): time.sleep(1) # 模拟耗时的计算操作 return num ** 2if __name__ == "__main__": numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] start_time = time.time() # 并行计算每个数字的平方 results = Parallel(n_jobs=-1)(delayed(square)(num) for num in numbers) end_time = time.time() # 打印计算结果 print(results) print("并行处理时间:", end_time - start_time)
在上述代码中,我们使用了 joblib 库的 Parallel函数和 delayed装饰器。通过将 square函数应用到 numbers列表的每个元素上,我们可以使用多个线程或进程来并行执行计算。n_jobs=-1表示使用所有可用的处理器内核。输出效果:
四、总结本文介绍了如何利用并行处理技术来优化 Python 中的 for 循环,从而提高程序的执行速度。我们讨论了并行处理的概念,介绍了常用的并行处理库,以及展示了使用 multiprocessing 和 joblib 库进行并行处理的示例代码。通过并行处理,我们可以充分利用多核处理器和多线程/进程的优势,加速程序的运行并提升效率。然而,在使用并行处理时,需要注意避免共享资源的竞争和处理器负载的平衡,以免引入额外的复杂性。因此,在实际应用中,需要根据具体情况选择合适的并行处理方案。希望本文能够帮助你理解并行处理的概念和应用,并在需要优化 Python 程序性能时提供有益的指导。
标签:
仓储物流“成渝圈”如何乘势而上? 12月3日,连接昆明和万象的中老铁路全线开通运营,被惠及的显...
两件西周青铜簋时隔三千年成功配对 考古工作者介绍,这个铜簋的盖、身分别时隔40余年出土,纹饰...
“医保砍价”不是一个人在战斗 晁星 “我眼泪都快掉下来了”“每一个小群体都不该被放弃”…...
“购物成瘾”真的是一种病 刘艳 牛雅娟 本周日即将迎来“双十二”促销季,很多人又开始摩拳...
因迷恋山间风景,一男子在甘孜州稻城县海拔4000多米的无人区迷失方向,随后与同伴失联。12月的稻城...
嫌疑人DNA信息比中后,成都市公安局刑侦支队技术处DNA实验室民警白小刚一下坐在凳子上,恍惚迟疑间...
一批反映南京大屠杀历史的新书发布 新华社南京12月7日电(记者邱冰清、蒋芳)“以史为鉴,开创未来...
我在现场·照片背后的故事|电影《亲爱的》里面没有的结局,在我眼前“上映” 12月6日,在深圳市...
冥想?泡脚?不如听听助眠音乐 晚上睡不着,白天睡不醒,成为最贴合都市人群的“睡眠画像”。随...
养老话题 老年教育面临缺口 “终身教育”潜力无限 【现实挑战】“新老年”群体愿意在培养兴...
孙海洋被拐14年儿子如何找到的? 警方侦办另一宗拐骗儿童案时发现线索,通过人像比对、DNA确认找...
北京天文馆、圆明园将对未成年人免费开放 12月6日,北京天文馆发布通知称,12月8日起试行对未成...
今年全国粮食总产量再创新高 连续7年保持在1 3万亿斤以上 根据对全国31个省(区、市)的抽样调...
斑块软的很危险 硬的就无碍? 血管里的“垃圾”分类 赶快学起来! 一项最新研究显示:中国...
诺西那生钠注射液大幅降价 聚焦医保谈判背后脊髓性肌萎缩症家庭 医保目录公布那天 好多家长都...
抖音“窗花剪剪”遭抄袭 被判获赔20万元 法院认为“窗花剪剪”的这种表达方式理应受到《著作权...
公安机关近日侦破3起拐卖儿童案件 失散十几年 3组家庭终于团圆了 北京青年报记者12月6日从公...
2021年度十大网络用语发布 本报讯(记者 路艳霞)作为年度“汉语盘点”活动最具网络特色的组成部...
北京天文馆向未成年人免费开放 本报讯(记者 牛伟坤)北京天文馆对票价免费及优惠政策作出调整:1...
2021北京百个网红打卡地发布 本报讯(记者 李洋)2021北京网红打卡地推荐榜单昨晚正式发布。自然...